
!1

GUI Building with Swing

IS311 Programming Concepts

!2

Agenda

• Java GUI Support
– AWT
– Swing

• Creating GUI Applications
• Layout Managers

!อง$%นความ+,อไป/0อน
⬥Classes / Objects
⬥Method Overloading
⬥Inheritance
⬥Polymorphism
⬥Interfaces
⬥How to read the Java2 API Documents

!3 !4

Java Graphical User Interfaces

• AWT
– Abstract Window Toolkit
– GUI for Java 1.0 and 1.1

• Swing or Java Foundation Classes (JFC)
– Java 2
– Extension to AWT

!5

AWT (Abstract Window Toolkit)

• Present in all Java implementations
• Described in (almost) every Java textbook
• Adequate for many applications
• Uses the controls defined by your OS (whatever

it is)
– therefore it's “least common denominator”

• Difficult to build an attractive GUI
• import java.awt.*;  
import java.awt.event.*;

!6

Some AWT Components

Java.awt package
– Button – A graphical push button
– Label – Displays a single line of read only text
– Menu – A single pane of a pull-down menu
– MenuItem – A single item within a menu
– TextField – Displays a single line a text and

allows user to enter and change the text
– Table – Displays a list of items

!7

Swing

• Extension to AWT
• Available with Java 2 and as an extension to

Java 1.1
• Provides more advanced components than
AWT

• Be careful when using with Applets
– Not all browsers support Swing

!8

Swing Components

• Available in the javax.swing package
– JButton
– JLabel
– JMenu
– JMenuItem
– JTextField
– JTable
– JSlider - Simulates a slider control
– JProgressBar – Displays the progress of a time

consuming operation

!9

Advantages of Swing
• Swing components are implemented with absolutely no native code

– More portable
– Not restricted to least common denominator

• Swing buttons and labels can display images instead of, or in
addition to, text

• You can easily add or change the borders drawn around most
Swing components. For example, it's easy to put a box around the
outside of a container or label.

• You can easily change the behavior or appearance of a Swing
component by either invoking methods on it or creating a subclass
of it.

• Swing components don't have to be rectangular.
– Buttons, for example, can be round.

!10

Swing Components

• Include everything from buttons to split panes to tables
• Pluggable Look and Feel Support
• Accessibility API

– Enables assistive technologies such as screen readers and
Braille displays to get information from the user interface

• Java 2D API (Java 2 Platform only)
– Enables developers to easily incorporate high-quality 2D

graphics, text, and images in applications and in applets
• Drag and Drop Support (Java 2 Platform only)

– Provides the ability to drag and drop between a Java
application and a native application

!11

Import Swing
• Present in all modern Java implementations (since

1.2)
• More controls, and they are more flexible
• Gives a choice of “look and feel” packages
• Much easier to build an attractive GUI
• import javax.swing.*;  
import javax.swing.event.*;  
and 
import java.awt.*;  
import java.awt.event.*;

• You may not need all of these packages

!12

Swing vs. AWT
• Swing is built “on top of” AWT, so you need to

import AWT and use a few things from it
• Swing is bigger and slower
• Swing is more flexible and better looking
• Swing and AWT are incompatible--you can use

either, but you can’t mix them
– ความจริงสามารถใช้ผสมกันได้ แต่ไม่ควรทำ
– Basic controls are practically the same in both
– AWT: Button b = new Button ("OK");
– Swing: JButton b = new JButton("OK");

• Swing gives far more options for everything
(buttons with pictures on them, etc.)

!13

To build a GUI...
1. Make somewhere to display things (a Container)

– Usually you would use a JFrame or a JApplet
2. Create some Components (buttons, text areas, panels, etc.)

– It’s usually best to declare Components as instance variables, and
– Define them in your applet’s init() method or in some

application method
3. Add your Components to your display area

– Choose a layout manager
– Add your Components to your JFrame or JApplet according to

the rules for your layout manager
4. Attach Listeners to your Components

– Interacting with a Component causes an Event to occur
– A Listener gets a message when an interesting event occurs, and

executes some code to deal with it

Container

The Container class is an abstract subclass of
Component, which has additional methods that allow
other Components to be nested inside of it.

Other Container objects can be stored inside of a
Container (since they are themselves Components),
which makes for a fully hierarchical containment system.

A container can also have a layout manager that controls the
visual placement of components in a container.

Containers

Container The superclass of containers.

JApplet
JFrame

Swing version of Applet
A top-level window with a title, menu
bar, and borders.

JPanel A container that can be embedded in
other containers

JWindow A top-level window without a title,
menu bar, or borders.

!16

Containers and Components
• A GUI is built by putting components into containers
• The job of a Container is to hold and display

Components 
• Some frequently used types (subclasses) of Component

are JButton, JCheckbox, JLabel, JTextField, and
JTextArea  

• A Container is also a Component
– This allows Containers to be nested

• Important Container classes are JFrame, JApplet,
and JPanel
– JFrame and JApplet both contain other containers; use
getContentPane() to get to the container you want

– You typically create and use JPanels directly

Structure of a JFrame object
Title JFrame

JRootPane
JLayeredPane
optional menu bar
content pane  
(%น12ห4บแสดงผล)
glass pane

Adapted from Core Java 1.2,  
Volume 1 - Fundamentals,  
Horstmann & Cornell

Java top-level containers (JFrame, JApplet, ...) have several layers (panes):  
root, content, layered, and glass. Programs normally reference only the  
content pane.

!

pane ในความหมาย=วไป 
หมาย>งกระจกหCงแDนบน  
หEา,างหFอประG 
 
ในคอมHวเตอKหมาย>ง%น1  
บนหEา,าง1ใLแสดงผล

What is a pane?

!18

JTextField

JLabel

JPasswordField JButton

JTextAreaJScrollPane

Example

!19

JButton

private JButton computeButton;

computeButton = new JButton("COMPUTE");

Declaration in
GUI class

Instantiation in GUI class
constructor

Example:

!20

JLabel

JLabel nameLabel = new JLabel("Student name");

Creation in GUI class
constructor since labels do
not generate events

Example:

!21

JTextField

private JTextField nameField;

nameField = new JTextField(35);

Declaration in
GUI class

Instantiation in GUI class
constructor

Example:

!22

JPasswordField

private JPasswordField userPassField;

userPassField = new JPasswordField(12);

Declaration in
GUI class

Instantiation in GUI class
constructor

Example:

!23

JTextArea

private JTextArea studentArea;

studentArea = new JTextArea(4,35);

Declaration in
GUI class

Instantiation in GUI class
constructor

Example:

!24

Creating an Application

• Import classes
– import javax.swing.*;
– import java.awt.*;
– import java.awt.event.*;

• All Swing components extend JComponent class
– Set size
– Change color
– Define fonts
– Hover help

• Before components can be displayed, they must be added to a
container

– Containers can be placed in other Containers
– Layout managers arrange components

JComponent

JButton

JButton

!25

Creating an GUI

• Create a class that represents the GUI
– Serves as the container

•JApplet, JFrame, JWindow

• public class Buttons extends JFrame {
– Call constructor method to handle setup
– Set the size of the frame (in pixels)
– Handle window closing
– Display the frame

!26

Adding Components to a Container
• Simplest container is a panel (extend JPanel)

JButton quit = new JButton("Quit");
JPanel panel = new JPanel();
panel.add(quit);

• Other containers (ie Frames, Windows, Applets)
• Broken down into panes
• Components are added to container’s content pane

Quit

!27

Japplet Example
import javax.swing.*;

public class ButtonApplet extends JApplet {
 JButton abort = new JButton("Abort");
 JButton retry = new JButton("Retry");
 JButton fail = new JButton("Fail");

 public void init() {
 JPanel pane = new JPanel();
 pane.add(abort);
 pane.add(retry);
 pane.add(fail);
 setContentPane(pane);
 }
}

!28

JFrame Examle
import javax.swing.*;
public class Buttons extends JFrame {
 JButton abort = new JButton("Abort");
 JButton retry = new JButton("Retry");
 JButton fail = new JButton("Fail");
 public Buttons() {

 JPanel pane = new JPanel();
 pane.add(abort);
 pane.add(retry);
 pane.add(fail);
 setContentPane(pane);
 }
 public static void main(String[] args) {
 Buttons rb = new Buttons();
 rb.show();
 }
}

Fail

Retry

Abort

Layout Management

Each container has a layout manager that
directs the arrangement of its
components

Java API has many layout managers but
the most three useful layout managers
are:
–border layout
– flow layout
–grid layout

Layout Managers
LayoutManager The interface that a layout manager must

implement.
BorderLayout place components along each edge and in

center
CardLayout displays one component at a time
FlowLayout places components left-to-right, top-to-

bottom
GridBagConstraints Used to specify constraints in a

GridBagLayout object.
GridLayout places components in a rigid grid with fixed

sized cells.
GridBagLayout places components in a grid with flexible

sized cells.

FlowLayout

The components are arranged in the container from
left to right in the order in which they were
added. When one row becomes filled, a new row
is started.

FlowLayout Constructors
• public FlowLayout()
 Constructs a new FlowLayout with a default  

center alignment and a default gap of five pixels  
for both horizontal and vertical.

• public FlowLayout(int alignment)

 Constructs a new FlowLayout with a specified alignment and a default
gap of five pixels for both horizontal and vertical.

• public FlowLayout(int align, int hGap, int vGap)
 Constructs a new FlowLayout with a specified alignment, horizontal gap,

and vertical gap. The gaps are the distances in  
pixel between components.

GridLayout Manager
•GridLayout arranges components into a grid of rows and
columns.
•You can specify the number of rows and columns, or the
number of rows only and let the layout manager determine the
number of columns, or the number of columns only and let the
layout manager determine the number of rows.
•The cells in the grid are equal size.
•Look at the API for the add method and constructor.

GridLayout Constructors
• public GridLayout(int rows,  
int columns)

 Constructs a new GridLayout with the specified
number of rows and columns.

• public GridLayout(int rows, int columns,
int hGap, int vGap)

 Constructs a new GridLayout with the 
specified number of rows and columns,  
along with specified horizontal and  
vertical gaps between components.

เมMอด2ห4บ add component ลงใน
container

• public add(Component comp)  
เNม component ลงใน container ตามOPบ

• public add(Component comp, int index)  
 เNม component ลงใน container โดยระRSแหTง1
!องการเNม UาเVน -1 หมาย>ง,อWาย

!35

Border Layout

• A BorderLayout manager can place a component
into any of five regions.

• Regions which are unused give up their space to
BorderLayout.CENTER.

!37

BorderLayout Demo
class Border extends JFrame {
 JButton north = new JButton("North");
 JButton south = new JButton("South");
 JButton east = new JButton("East");
 JButton west = new JButton("West");
 JButton center = new JButton("Center");

 Border() {
 super("Border");
 setSize(240, 280);
 JPanel pane = new JPanel();
 pane.setLayout(new BorderLayout());
 pane.add("North", north);
 pane.add("South", south);
 pane.add("East", east);
 pane.add("West", west);
 pane.add("Center", center);
 setContentPane(pane);
 }

!38

Border Layout Example

Get Data Exit
!North

!Center

JPanel pane

Panel innerPane

Panel dataPane

!39

The BorderLayoutDemo class
public class BorderLayoutDemo extends JFrame {
 static DefaultTableModel dataTable = new
 DefaultTableModel();
 static JTable table = new JTable(dataTable);
 static JButton exitButton = new JButton("Exit");
 static JPanel pane = new JPanel();
 static JPanel innerPane = new JPanel();
 static JPanel dataPane = new JPanel();
 static JButton getButton = new JButton ("Get Data");
 static JTextField inputData = new JTextField(6);

!40

The BorderLayoutDemo class

pane.setLayout(new BorderLayout());
innerPane.add(getButton);
innerPane.add(inputData);
innerPane.add(exitButton);
pane.add("North",innerPane);
.
.
.
.
JScrollPane scrollPane = new JScrollPane(table);
dataPane.add("Center",scrollPane);
pane.add("Center",dataPane);

!41

Summary

• Abstract Windowing Toolkit provides GUI
support for Java 1.0 and Java 1.1

• Swing (Java Foundation Classes) provides GUI
support for Java 2

• Swing is an extension of the Java 1.1 AWT
• Swing components are found in the
javax.swing package

• Layout Managers provide a consistent form for a
GUI

Event Handling

!42

Components & Events

A component generates events when a
user interacts with it. The Event class
encapsulates all the states in an event.
Each component generates a different
set of events.

!44

Event Delegation Model
An event source produces events and dispatches them to all

registered event listeners

Event Source

Event Listener

Stimulus Event

!45

source & listener

• A single class can implement multiple listener
interfaces

• A single listener object can register with multiple event
sources

• Multiple listener objects can register with a single
event source (multicast)

!46

Events

• An Event is the encapsulation of some user input delivered to the
application asynchronously

• Events correspond to
– Physical actions, (e.g., mouse button down, key press/release)
– Logical events, (e.g., button press, got focus)

• The java.awt.AWTEvent is the root class of all AWT events (a
subclass of java.util.EventObject)

• From any AWTEvent you can get the object that was the event
source by invoking getSource()

• AWTEvent is subclassed as: ActionEvent, WindowEvent,
ItemEvent, KeyEvent, MouseEvent, TextEvent,
etc.

!47

GUI Events Defined by Java

WindowEvent
ActionEvent

ItemEvent

ListSelection
KeyEvent
MouseEvent

A frame
A button
A text field
A text area
A menu item
A combo box
A checkbox
A radio button
A list box
A key
A mouse

Window opened/closed
Click button
Press Enter
Press Enter
Select menu item
Select/deselect item
Select/deselect item
Select/deselect item
Select/deselect item
Key pressed or released
Move or click mouse

Event Class Source Object User Action

!48

Event Programming and Processing

component object.
Add a listener forCreate GUI Implement event method

the component object. inside an event class handler.

Listener detects Event method(s) is calledUser action on
automatically to handle event.

Event Call
GUI component. event.

Programming Steps:

Java Processing Steps:

!49

Event Listener Interfaces

• Event handling is achieved through the use of listener
interfaces, defined in java.awt.event, e.g.
– ActionListener - Button, MenuItem, List
– WindowListener - Window
– ItemListener - Choice, List, Checkbox
– KeyListener - Component
– MouseListener - Commponent
– MouseMotionListener -Component
– TextListener - TextComponent

!50

Event Listener Interfaces (cont.)

Inheritors of the interface have to implement one
or more methods in order to respond to certain
types of events, e.g.

• ActionListener - actionPerformed
• WindowListener - windowOpen,
WindowClosing, etc.

!51

Event Registration

Three things must be done to receive events:
• The object's class must inherit from an
XXXListener interface

• Each interface requires the class to implement one or
more interface (abstract) methods that receive an
event and process it

• Prior to receiving any events, an object must register
itself with the event source by invoking its
addXXXListener method

!52

Event Delivery and Decoding

• When an event occurs, the event source sends the event
to the appropriate listening methods on all registered
event listeners

• If necessary the listener can get the event source
(getSource()) from the event

• For ActionEvents, the action command
(getActionCommand()) can also be gotten

• Learn about events and event processing by
implementing event listener and calling
System.out.println(e) in the listening methods

!53

การถอน Event Listener

An event listener may be removed from a
component's list of listeners by calling a
removeXXXListener() method, passing in
the listener to be removed.

eg.,
btn.removeActionListener(al);
removes action listener al from button btn

!54

การจดัการ Event ดว้ย subclass ของ
component

class MyBtn extends Button {
 public MyBtn(String label) {
 super(label);
 enableEvents(AWTEvent.ACTION_EVENT_MASK);
 }

 public void processActionEvent(ActionEvent ae) {
 System.out.println(
 "Processing an action event.");
 super.processActionEvent(ae);
 }
}

!55

Adding an ActionListener to the Bottons class
abort.addActionListener(
 new ActionListener() {
 public void actionPerformed(ActionEvent event)
 {

 System.exit(0);
 }
 }
);

!An ActionListener allows you to add the lines of code that will be executed  
when the end user clicks the button

IDE with Visual Editor

➢JBuilder (Borland ขายYจการไปแZว)
➢Eclipse (IBM and others) 

http://www.eclipse.org/
➢Netbeans (Sun->Oracle) 

https://netbeans.org/
➢ IntelliJ IDEA (JetBrains) 

https://www.jetbrains.com/idea/

!56
! IDE = Integrated Development Environment

Eclipse Visual Editor

!57 !58

Visual Programming

A Visual Programming Environment

